Generalized Quantifiers and Prenex Normal
Forms

Loic Auégre[000970004756727016)(]

LIRMM (Université de Montpellier - CNRS), Montpellier, France

Abstract. Generalized quantifiers, introduced by Mostowski and Lind-
stréom, are generalizations of the standard quantifiers of modern logic, V
and 3, and have been extensively studied for their applications to model
theory and computational linguistics, but not so much for their purely
syntactical and proof-theoretic properties. In this paper, we introduce the
notion of polarity of a quantifier, and use it as criteria for the existence
of prenex normal forms for some classes of quantifiers.

Keywords: Logic - Generalized Quantifiers - Prenex Normal Forms

1 Introduction

Generalized quantifiers, initially introduced by Mostowski [7] and further devel-
oped by Lindstrém [6] are a generalization of standard first-order quantification
that treats quantifiers as generic relations over relations (or tuples of relations)
on the domain (a.k.a universe, model) of an interpretation: thus, quantifiers are
viewed as higher-order concepts.

This concept of generalized quantifiers is not new, and has been extensively
studied from a model-theoretic and linguistic viewpoint. This is not surprising,
as it originates in the generalization of the usual quantifiers’ interpretation in
a given model, to generic relations on this model. The expressive power of this
formalism has also found a significant use in linguistics, for its ability to account
for the great diversity of quantification in natural language. However, very little
work has been done on the more proof-theoretic and syntactic aspects of gen-
eralized quantifiers. Their expressive power is part of the reason why: finding
sensible syntactic properties and reasonable deduction systems for non-trivial
quantifier classes in general is considerably more challenging. Among the few
works on proof theory for some very limited subsets of quantifiers, we can cite
Keisler [5] on quantifiers such as "uncountably many", and more recently the
works of Baaz and Lolic [1] on Henkin quantifiers.

In a very broad sense, the general aim of our work is to continue these proof-
theoretical approaches of quantifiers, and if it is most likely impossible for the full
theory of generalized quantifiers, to find classes of quantifiers for which we can
have reasonable properties and deduction systems. In this article specifically, we
study the possible existence of prenex normal forms for languages with general
quantifiers. The concept of prenex normal forms (i.e. putting quantifiers at the

2 L. Allégre

start of the formula), is an important syntactic property for logical languages
and is widely used in automated theorem proving, which makes it an interesting
question if we want to develop such systems for generalized quantifiers.

2 A Reminder on Generalized Quantifiers

We will start by giving here a very succinct presentation of generalized quanti-
fiers, mainly inspired by Peters and Westerstahl [8], and Szymanik [9]. We refer
the reader to these works for a more thorough description.

Definition 1 (Syntax). If k1, ..., k, are strictly positive integers, a quantifier
Q of type (ki,...,k,) is a variable-binding operator that applies to n formulas,
binding k; variables in the i-th formula. Thus, if Z1, ..., T, are tuples of variables
and @1, ..., pn are formulas, then

lejn[cpl(i'l)aygon(i'n)]
is a formula, in which all free occurrences of T; in p; are bound by Q.

Thus, given a language £, we can extend it into a language £’ by adding a
number of generalized quantifiers following the aforementioned rule. In the re-
mainder of this work, we will place ourselves within the framework of a standard
first-order language augmented with generalized quantifiers.’

Definition 2 (Semantics). Semantically, a quantifier Q of type (ki, ..., k) is
interpreted by a function which maps each model M = (D, I) to a n-ary relation
Q™M over n k;-ary relations on D (in other words, Q™ is a set of subsets of
D*t x ... x Dk~).

The satisfaction relation for Q in the model M = (D, I) is then as follows:

M = QF1..Zp[01(Z1), oy 0n(@n)] iff (@M., M) € QM
where M = {z € D | M |= ¢;(2)}

The relation Q™ for each model is sometimes called a local quantifier, and the
function QQ mapping each model M to @™ is in turn called a global quantifier.
In cases where it does not lead to any ambiguity, we can usually conflate the
two and speak of the quantifier) with no distinction.

In the same manner, when there is no ambiguity in which variables are bound
by @, we can omit them and write in a more concise, set-oriented manner:
Q[(plv ey <pn] to mean Q:Elmfn[gol(fl)v ey <)On(in)]

This formal definition is better understood with some examples. In simple
terms, the idea is that predicates are seen as sets of individuals (or tuples of indi-
viduals), and quantifiers as relations over those sets. Thus, to say that JxF(z) is

! There is of course a sensible notion of generalized quantifiers on other languages, for
example second-order or higher-order languages, but this is well beyond the scope
of this study.

Generalized Quantifiers and Prenex Normal Forms 3

to say that the set of = that have the property F' is not empty, meaning that the
quantifier 3 is in every model M = (D, I) the relation 3™ = {A C D | A # 0}.
Similarly, the universal quantifier is simply the relation that only accepts the
whole domain D: V™ = {D}. Building on this idea, any relation on n predicates
of respective arities ki, ..., k, defines a quantifier of type (k1, ..., k,). For exam-
ple: SomeM = {A,B C D x D | AN B # (I} of type (1,1), meaning that some
individuals with property A also have the property B.

Definition 3. If Q and Q' are two quantifiers of type (ki,...kyn), then Q V Q'
and Q AN Q' are quantifiers of type (ki, ...k,), with the expected meaning:

- M ': (Q\/Q/)[@l,,ﬁpn] ZﬁM): Q[Sﬁhﬂpn] or M ': Q,[Qola"'a(pn]
- M E(QAQ)p1, - pn] f M E Qlp1, ... on] and M = Q'[p1, ..., ¢n]

Definition 4. If Q is a quantifier of type (k1,...k,), then the outer negation
of Q is the quantifier =Q such that:

M = (EQ)e1, o] i M EQler, . 0]

The inner negation on the i-th argument is the quantifier Q—; defined by:

M):(Qﬁi)[splwnﬂpiyma‘pn] Z.[f M):Q[Splw'wﬁspiv"'v(pn]

From this, the notion of dual quantifier can naturally be extended to any
quantifier, by defining the dual of @ in the i-th argument as Q% = (-Q)—; =
=(Q:).2

3 Introducing z-polarities

In order to study prenex normal forms for generalized quantifiers, we need to
introduce the notion of polarity of a quantifier in a given argument 3.

Definition 5. Let Q be a quantifier of type (ki,...,kn). We say that Q is:

— positive in the i-th argument if for all M and for all py, with k # i:
M EQ[.pi-1, T, pit1,]
anti-positive in the i-th argument if for all M and for all oy, with k # i:
M FE Q[@izt Ty 0it1, -
— negative in the i-th argument if for all M and for all vy, with k # i:
M =Q[,pim1, Ly pit1, -]

— anti-negative in the i-th argument if for all M and for all py with k # i:

M l# Q[? Pi—1, J—v Pi+1,]
2 One can easily verify that for all 4, (Q%)% = @Q, but in general for i # j, (Q%)% # Q.

4 L. Allégre

An important remark to make here is that the definition of polarity is given
with respect to definable sets, thus dependent on the particular choice of a
language L: in the definition, the ¢y range over all extensions of L-formulas, i.e.
L-definable subsets of M. This means that the notion of polarity is dependent
on the language, and in different languages an quantifier may not have the same
polarity. This is not a problem: in a given language we still have a sensible notion
of polarity with the properties that follow, but it is important to be aware of
this dependency on the choice of a language.

A first immediate property of polarity is that @ is positive (or negative) iff
—(@) is anti-positive (or anti-negative), and that @ is positive (or anti-positive)
iff Q—; is negative (or anti-negative).3

It is also worth noting that while a quantifier cannot be positive and anti-
positive (nor negative and anti-negative) in the same argument, it may well
happen that it is both positive and negative (or anti-positive and anti-negative)
and in general, polarity on one argument is independent of polarity on other
arguments. For quantifiers that have these polarity properties, we can establish
quantifier shift rules, as follows.

Lemma 1. Let Q be a quantifier, T variables, @; a formula with free variables
Z, and F a formula which does not contain any of the variables T. We have the
equivalences:

1. If Q is positive in the i-th argument, then

Qxl...,0i(Z) V F,..] = QF[...,0i(T),..]VF
2. If Q is anti-positive in the i-th argument, then

QT[...,0i(Z) V F, ...] = QZ]..., 0i(Z),..] N °F
8. If Q is negative in the i-th argument, then

QT[...,0i(Z) N F, ...] = QZ]..., i (Z),..] V- F
4. If Q is anti-negative in the i-th argument, then

QIZ[...,0i(T) N F,...] = QZ[..., 0i(T), .| A F

Proof. We will only present here the proof for the first case (@ positive). The
proof for the other cases is unremarkably similar, or can be obtained by simply
using the properties on the positivity /negativity of =@ and Q—.

Let @ be a quantifier, positive in the i-th argument.

=: Let M = (D, I) be a model, and suppose that M = QZ[..., 0;(Z) V F,...].
If M = F, then trivially M = QZ[..., p;(Z),...] V F.

3 The important corollary is that Q is i-positive iff Q% is i-anti-negative, and so on.

Generalized Quantifiers and Prenex Normal Forms 5

If M [~ F, then {z € D*i (Z)V F} ={z € D~ (Z)}-
Thus, from the hypothesis M |= QZ[...,i(Z) V F,...], we have also M |=
Qz[...,vi(Z),...], which means M = QZ[..., p;(Z),...] V F.

«: Let M = (D, I) be a model, and suppose that M = Qf[wi(Z),...]V
(T)VF} = |: T} Smce
@ is taken to be positive, we obtain that M |= QZ|[..., ¢;(Z) V F, ...].
If M [~ F, then by hypothesm necessarily M | QZ]..., (57) ..]. Since
M %F,wealsohave{:ce (Z)\/F}—{zeDk M Epi(2)}.

Thus, we obtain that M = QZ]...,v;(Z) V F, ...]. O

Lemma 2. Let Q be a quantifier, T variables, ¢; a formula with free variables
x. Then:

QZ[..., ~ps(Z), ..] = “QUZ[..., 0s(Z), ...]
Proof. By definition of the dual quantifier:
Q... ~0i(T), ...] = QU —;T[..., =i (Z), ..] = QU T[..., pi(T), ...] O

4 Prenex Normal Forms

The next logical step is to ask whether it is possible, using these rules, to find
prenex normal forms for formulas with generalized quantifiers. The notion of
prenex normal form with generalized quantifiers is a direct generalization of the
usual prenex normal form in classical first-order logic, with the main difference
being that arbitrary quantifiers are n-ary operators, and thus the notion of a
linear quantifier prefix becomes a prefix subtree in the formula tree.

Definition 6. The set of formulas in prenex normal form is defined induc-
tively:

1. Every atomic formula, i.e. every formula P(ty, ...,t,) where P is a predicate
and ty, ..., t, are terms, is in prenex normal form.

2. If ¢ and o are formulas containing no quantifier, then @ A, o Vb, o —
and —p are in prenex normal form.

3. If p1,...,pn are formulas in prenex normal form and Q is a type (k1,..., kn)
quantifier, then Q[p1, ..., n] is a formula in prenex normal form.

4. No other formula is in prenex normal form.

Theorem 1. Let L be a first-order language with generalized quantifiers and

closed by quantifier duality, that is if Q is a n-ary quantifier of L then for

1<i<n, Q% ¢c L, and let & be a L-formula verifying the following property
(H) For all quantifiers Q in @, both of the following holds:

1. Q is either positive or negative in i for some argument i.
2. Q is either anti-positive or anti-negative in j for some argument j.

6 L. Allégre

Then there exists a L-formula ¥ equivalent to @ such that ¥ is in prenex normal
form.

Two remarks : firstly, the condition on £ to be closed under quantifier du-
ality is important, since if duals are not included in the language, the case of
a quantifier within the scope of a negation can not be treated. Secondly, we
could alternatively require that all quantifiers in £ satisfy (H), in which case all
L-formulas will have a prenex normal form (note that if @) satisfies (H), then so
do all the duals of Q).

Proof. The proof is by induction on the complexity of the formula &, which
we define by the number of quantifiers and logical connectors excluding —, —; in
P, noted ¢(P).

Every atomic formula and every negation of an atomic formula is already
in prenex normal form, thus every formula of complexity 0 has an equivalent
prenex formula of complexity 0.

Let n be a strictly positive integer, and suppose that for all k& < n, every
formula of complexity k that satisfies (H) has an equivalent formula of com-
plexity at most k in prenex normal form. Let @ be a formula satisfying (H) of
complexity n. Then @ is in one of the following forms:

- d=FVG.
F, G verity ¢(F)+c(G) = n—1, and thus there are equivalent formulas F’, G’
in prenex normal form such that ¢(F’) + ¢(G') <n — 1.
If neither F’ nor G’ starts with a quantifier, then by definition of the prenex
normal form, they contain no quantifiers. Then ¥ = F’ V G’ is in prenex
normal form, equivalent to @ and its complexity is at most n. Suppose now
that one of F’ or G’ starts with a quantifier. Without loss of genericity,
suppose F’ is in the form Q[e1, ..., om]-
If @Q is positive in some argument 4, then by Lemma 1, F’ V G’ is equivalent
to QL. i VG, ...]. We have 37 c(p;) < c(F') — 1, thus:

lpi V) + Y el)) < e F) + (@) <n—1
J#i
If instead @ is negative in some argument 7, then by Lemma 1, F’' V G’ is
equivalent to Q[..., p; A -G, ...], provided we rename the variables bound by
Q@ so that there is no conflict with variables in G. The complexity of the
resulting formula is the same as above, since c¢(¢; A —G') = c(p; V G')
In either case, we can use our induction hypothesis on every ¢;, ¢; VG’ and
@; A—G'. This means that there are formulas in prenex normal form v, ..., ¥,
such that F'V G’ is equivalent to ¥ = Q[¢1, ..., Y], and 37" (1) < n—1
Thus, ¥ is equivalent to @, is of complexity at most n, and since every 1; is
in prenex normal form, ¥ is also in prenex normal form.
- &=—=(FVGQG).
The method used in the previous case is also applicable here, since the nega-
tion does not increase the complexity of @. Thus, there are F’, G’ in prenex
normal form such that @ is equivalent to ~(F’' vV G').

Generalized Quantifiers and Prenex Normal Forms 7

If neither F’ nor G’ starts with a quantifier, then =(F’ vV G’) is already in
prenex normal form, and its complexity is at most n. Else, using the same
proof as before, we obtain that there are 11, ..., 1, formulas in prenex normal
form, such that @ is equivalent to ¥ = =Q[i)1, ..., Y], with 3770, c(¥y) <
n — 1.

It remains only to push the negation inwards. @) is either positive or negative
in some argument i, and ~Q[v1, ..., ¥,] is equivalent to Q% [y ..., =t;, ..., Y]
If Q is a quantifier satisfying hypothesis (H) on argument 7, then so is Q% .
Since ¢(—);) = c(¢;) < n — 1, we can transform —); into an equivalent
formula in prenex normal form) of complexity at most ¢(—);). Thus, @ is
equivalent to ¥ = Q% 1)1, ..., ...,]. All immediate subformulas of ¥ are
in prenex normal form, so ¥ is in prenex normal form, and ¢(¥) < n.

- P=FANGor®d=—(FANG).
These cases are treated in the exact same way as F'V G and —~(F'V G), using
the other equivalences from Lemma, 1.

— & =Q[p1,-, Pm)-
If ¢(®) = n, then: 337, c(p;) =n — L.
We can then apply our induction hypothesis to every ¢; to obtain 91, ..., 1¥m
formulas in prenex normal form such that @ is equivalent to ¥ = Q[i)1, ..., ¥m].
By definition, ¥ is in prenex normal form, and since for all j, c(¢;) < c(g;),
its complexity is at most n.

— & =-Q[p1, e, Pm)-

Similarly, if ¢(®) = n, then: Z;nzl c(p;) = n —1, and there are ¢1, ..., ¥,
formulas in prenex normal form such that & is equivalent to =Q[)1, ..., V).
@ is either positive or negative in some i, so we push the negation inwards on
the i-th argument: @ is equivalent to Q% [iy, ..., =i, ..., ¥p]. c(—1h;) < n—1,
thus we can transform —); into ¢, in prenex normal form, such that @ is
equivalent to ¥ = Q% [1)q, ..., ¥, ..., Y.

By definition, ¥ is in prenex normal form (all the quantifier subformulas are
in prenex normal form), and its complexity is at most ¢(®) = n.

By induction, we obtain that for all n, every formula of complexity n satisfying
(H) has an equivalent formula in prenex normal form of complexity at most
n. O

Let us make some remarks on this result. Firstly, there is of course no unicity
of prenex normal forms for a given formula (as usual): in general, for a quantifier
@, if there are multiple arguments i so that @ satisfies (H), we can always
"choose" which of the subformulas of () we push the connectors into.

Another remark is that for formulas that do not satisfy (H) (or only partly),
there may or may not exist prenex normal forms depending on the case. An
example is given by the quantifier At Least[A, B] meaning |A| > |B|: At_Least
is positive in the first argument, negative in the second, but neither anti-positive
nor anti-negative in any argument. As a result, the formula At Least[p1, 2| VF

8 L. Allégre

has a prenex normal form*: At Least[p1V F, p3]. However, At Least[p1, p2] AF
does not in general (note that in particular cases, depending on the formula F'
and/or the language considered, there may still be an equivalent prenex formula).

5 Characterization of Some Quantifier Classes

Polarities gives us strong criteria for prenex normal forms, but many quantifiers
do not have these properties. In this section, we present a few results on polarities
for some well-known classes of quantifiers.

5.1 Monotone Quantifiers

Monotonicity, as introduced by Barwise and Cooper [2], is an important property
of generalized quantifiers and has been extensively studied from a linguistic
perspective as it is closely linked to the behaviour of quantification in natural
language.

Definition 7. A quantifier Q of type (ki,...,ky) is said to be monotone in-
creasing in the i-th argument if for all M = (D, I), the following holds:

If M= Qlpr, .., o) and o € @M C DF | then M = Qlepn, ... ¢}, .., 1]

with pM == {z € D* | M |= ¢:(%)} denoting the extension of p; in M.5
Conversely, Q is said to be monotone decreasing in i if the following holds:

IfM): Q[@17790n] and @;M g goi\/l g Dki; then M): Q[‘pla a@ia»@n]

Now, since for a given extension of a formula ¢, we have 1M C M C TM,
from the definitions of monotonicity and polarity we can make the following
remarks.

Property 1 If Q is monotone increasing in the i-th argument, and if for all M
and all p; with j # i there exists p; such that M = Q[p1, ..., Pi, ..., on], then
Q is positive and anti-negative in the i-th argument.

Property 2 If QQ is monotone decreasing in the i-th argument, and if for all M
and all p; with j # i there exists ¢; such that M = Q[p1, ..., @i, ..., n], then
Q is negative and anti-positive in the i-th argument.

Corollary 1. If Q is a quantifier of type (k) and Q is not trivial (i.e. Q is
neither () nor P(D¥)), then:

— If Q is monotone increasing, then Q is positive and anti-negative.
— If Q is monotone decreasing, then) is anti-positive and negative.

4 several, actually: At_Least[p1,p2 A —F] is also an equivalent prenex formula.

® In other terms, ¢ C ;™ means that M = ¢; — ¢}

Generalized Quantifiers and Prenex Normal Forms 9

5.2 Henkin (Branching) Quantifiers

Henkin (or branching) quantifiers were introduced by Henkin [4] as a way to ex-
press independencies between quantified variables beyond the restrictions of first
order logic. The underlying idea is to allow a partial ordering of the quantifiers
V and 7 instead of a total one. The simplest non-trivial example is the quantifier
Qu = (:i gg), meaning that y depends only on z, and v on u. Formally, they
are equivalent to quantifier prefixes of second-order existential logic, as proven
by Enderton [3] and Walkoe [10]: the specific dependencies between variable can
be expressed by Skolem functions, for example (zi gg)F (z,y,u,v) is equivalent
to AfAgVaVuF (z, f(x),u, g(u))C.

While they are not originally related to the concept of generalized quantifiers,
Henkin quantifiers can in fact be seen as a special case of generalized quantifiers.
Indeed, a Henkin quantifier with k variables is represented by a generalized
quantifier of type (k):

Q={RC D" 3f1,....3fm, Y1, ...V, (21, oy T, f1(2)s oy fin(2)) € R}

with z; being the 7 universally quantified variables, f; representing the j existen-
tially quantified variables, and the arguments of each f; being the x; on which
the j-th existential variable depends.

Theorem 2. We consider a first-order language L augmented with Henkin quan-
tifiers (not necessarily all of them) and closed by quantifier duality.

Then Henkin quantifiers in L are positive and anti-negative, and thus every
L-formula has a prenex normal form.

Proof. For any Henkin quantifier, let Qg be its representation as a generalized
quantifier: Qi = {R C D¥| 3f1, ..., 3fm, V21, .o, V0, (T1, ooy Ton, f1(00), ooy frn(22)) €
R}.

Now, M = Qp|[T] if there are fi, ..., f, functions such that for all z1, ..., T,
(21, oo Ty f1(-2), e, fim(...)) € DE. DF containing all possibles tuples, any choice
of functions will do, thus for all models M, M = Qg[T].

Similarly, there are no fi, ..., f, such that (1, ...,Zm, f1(...), ., fm(..)) € 0,
thus for all models M, M [~ Qg[L].

By definition, this means Qg is positive and anti-negative, and Theorem 1
gives us the existence of prenex normal forms. a

6 Conclusion

We have introduced the notion of i-polarity of generalized quantifiers, which
gives us criteria for the existence of prenex normal forms, and we have begun

8 Using this specific formulation with functions obviously requires the Axiom of
Choice. Note that the AC is however not required to have the equivalence with
existential second-order logic: it is also correct to use generic two-place predicates
instead. The use of functions is however often preferred as it is much more intuitive
when representing dependencies.

10

L. Allegre

studying well-known classes of quantifiers in the light of this new concept. In
the future, we aim to pursue this characterization of some common quantifiers
classes. We have also noticed that these criteria are sufficient, but not necessary:
many other quantifier formulas can be put in prenex normal form, and identifying
other conditions for this to be possible is the natural continuation of this work.

Acknowledgements The authors would like to thank Bruno Durand for pointing out
the interest in studying these questions, and for his valuable insights on the subject.

References

10.

Baaz, M., Lolic, A.: Towards a proof theory for henkin quantifiers. J. Log.
Comput. 31(1), 40-66 (2021). https://doi.org/10.1093/LOGCOM/EXAA071,
https://doi.org/10.1093 /logcom /exaa071

Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics
and Philosophy 4, 159-219 (1981). https://doi.org/10.1007/BF00350139
Enderton, H.B.: Finite Partially-Ordered Quantifiers. Mathematical Logic Quar-
terly 16(8), 393-397 (Jan 1970). https://doi.org/10.1002/malq.19700160802
Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods:
Proceedings of the Symposium on Foundations of Mathematics, Warsaw, 1959. pp.
167-183. Panstwowe Wydawnictwo Naukowe / Pergamon Press, Warsaw (1961)
Keisler, H.J.: Logic with the quantifier. Annals of Mathematical Logic
1(1), 1-93 (1970). https://doi.org/https://doi.org/10.1016 /S0003-4843(70)80005-
5, https://www.sciencedirect.com/science/article /pii/S0003484370800055
Lindstrom, P.: First order predicate logic with generalized quantifiers. Theoria 32,
186-195 (1966)

Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44,
12-36 (1957)

Peters, S., Westerstahl, D.: Quantifiers in Language and Logic. Clarendon Press
(2006)

Szymanik, J.: Quantifiers and Cognition: Logical and Computational Perspectives,
Studies in Linguistics and Philosophy, vol. 96. Springer International Publishing
(2016). https://doi.org/10.1007/978-3-319-28749-2

Walkoe, W.J.: Finite partially-ordered quantification. Journal of Symbolic Logic
35(4), 535-555 (Dec 1970). https://doi.org/10.2307 /2271440

